
1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 1/8

UbikTransmedia / rvr

Ruby Virtual Reality

 MIT License

 0 stars 0 forks

Code Issues Pull requests Actions Projects Security Insights

View code

README.md

 RiVeR 0.5

Ruby Virtual Reality: A standalone blueprint for cybernetic VR
experiences

Hello WoVRd!
Welcome to Ruby Virtual Reality. This blueprint is meant to help you build cybernetic VR
experiences, which means:

Flow > Graphics

 Star Watch

 master Go to file

UbikTransmedia Active/Deactive ALL cargos. Each cargo has a unique… … on Jun 27, 2019 21

https://github.com/UbikTransmedia
https://github.com/UbikTransmedia/rvr
https://github.com/UbikTransmedia/rvr/blob/master/LICENSE
https://github.com/UbikTransmedia/rvr/stargazers
https://github.com/UbikTransmedia/rvr/network/members
https://github.com/UbikTransmedia/rvr
https://github.com/UbikTransmedia/rvr/issues
https://github.com/UbikTransmedia/rvr/pulls
https://github.com/UbikTransmedia/rvr/actions
https://github.com/UbikTransmedia/rvr/projects
https://github.com/UbikTransmedia/rvr/security
https://github.com/UbikTransmedia/rvr/pulse
https://github.com/UbikTransmedia/rvr/blob/master/public/img/vrheraclitus.png
https://github.com/login?return_to=%2FUbikTransmedia%2Frvr
https://github.com/login?return_to=%2FUbikTransmedia%2Frvr
https://github.com/UbikTransmedia/rvr/find/master
https://github.com/UbikTransmedia/rvr/commits?author=UbikTransmedia
https://github.com/UbikTransmedia/rvr/commit/d2c3d4f50db79732abbbfe265c9cbcc670ea7aa6
https://github.com/UbikTransmedia/rvr/commit/d2c3d4f50db79732abbbfe265c9cbcc670ea7aa6
https://github.com/UbikTransmedia/rvr/commits/master
https://github.com/UbikTransmedia

1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 2/8

Interacting > Watching
Connected > Lonely

As it progresses, the project aims for:

WebVR (A-frame) as the canvas
Concurrent users
Restful API
Asincronous queries (jQuery) in 3D
Runtime console/commands (Dungeon Master)
Controllers, controllers, controllers!

But give it some time! It just started! :) If feeling impatient, You can read more about the
ethos behind this project at Jaron Lanier's books.

Install and run
RiVeR relies on Ruby and Sinatra to work. It is meant to be a blueprint, so no complex
install, 3rd party sorfware nor surroinding apps are needed/provided. You get the files, and
that's all. It works with a single command line and it will stay this way.

To run it: install ruby, download the files, get into the main folder through your favourite
shell console, and type:

ruby rvr.rb

If you want to make the server public (so you can access it through any point of it's private
network):

ruby rvr.rb -o 0.0.0.0 -p 4567 -env production

Then visit your IP or localhost and port 4567 to see:

http://localhost:4567

Basic concepts

https://es.wikipedia.org/wiki/Jaron_Lanier
https://github.com/ruby/ruby
https://github.com/sinatra/sinatra

1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 3/8

RiVeR is, essentially, a collection of multiuser experiments; that you can borrow to speed
up the development of you own projects. It's goal is to leap the gap from single to
multiplayer user experience.

Sinatra legacy

Sinatra runs within the single file from which the library is called (rvr.rb(9): require 'sinatra').

The rvr.rb file allows you to build web routes, this way:

get '/route-to-destiny' do
 # whatever you want to process
 erb :view_to_render
end

For more information about how Sinatra handles petitions, please refer to its
documentation on routes and views.

Sinatra also uses a convention for resource handling. You will find the HTML templates at
the /views folder. Resources such as images, CSS and JavaScript are found (and fully
available from anywhere within Sinatra) at /public folder; for example, this is how you call a
CSS file from the HTML templates at /views:

<link rel="stylesheet" type="text/css" href="css/style-cargo-sender.css">

Rails legacy (ActiveRecord)

ActiveRecord is a object model for database handling. Instead of writting SQL sequences
for the database, ActiveRecord turns every table into an object with easy methods. For
more information, please refer to ActiveRecord's documentation.

Current database system is SQLite, a lightweigth database that fits in a file.

Please remember: ActiveRecord objects are translated as the plural of their table names. So
a table called users will be accessed through a class called User. For example, in order to
retrieve the user with ID equal to 5:

User.find(5)

https://github.com/sinatra/sinatra#routes
https://github.com/sinatra/sinatra#views--templates
https://github.com/rails/rails/tree/master/activerecord
https://guides.rubyonrails.org/active_record_basics.html
https://www.sqlite.org/index.html

1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 4/8

You can extend any class to be handled as a database object like this (just note that you
will have to extend the database; you can use the DataBaseHelper.build helper for this):

class Cargo < ActiveRecord::Base
end

Blocks

Commonly, frameworks attempt to comprise all the similar functions in conceptual
structures (persistence, models, testing, etc.) so, once the architechture is clear, secondary
apps can go through it seamslessly. This is the case of Rails, which provides a whole set of
command line tools and development conventions to help projects get bigger (version
control, TDD, database migrations, etc.)

In this case, RiVeR comes with a folder called /blocks, which is rather the opposite. Every
implementation is meant to be as independent as possible from the rest; as simple as
possible overall. There are no more conventions that Sinatra's and ActiveRecord's. The
reason why is that RiVeR is not meant to be a full spectrum framework, but a launch ramp
to help you skip the wikklitymikklity parts of development and focus on creating enticing
WebVR experiences.

Current blocks are:

db_helper.rb

Makes database connection easy. You can edit its code in order to extend persistence. It's a
Ruby module with three tools:

DataBaseHelper.setup

Checks if database exists; otherwise, it creates it.

DataBaseHelper.connect

It binds you application to a given SQLite file. You can also change the addapter and
parametres (more at ActiveRecord adapter documentation).

DataBaseHelper.build

If called, it creates the database and its tables. If you want your database to handle
more types of data, this is the method you should extend.

https://github.com/rails/rails
https://github.com/rails/rails/tree/master/activerecord
https://webvr.info/
https://api.rubyonrails.org/classes/ActiveRecord/ConnectionHandling.html#method-i-establish_connection

1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 5/8

db_models.rb

This file helds the class models that will inherit ActiveRecord::Base, so you can handle their
tables in the database.

randos.rb

A collection of random generators. The current random function Randos.test_cube, for
example, calculates a random 3D cube; if placed at the return of any AJAX function, it will
send a test 3D cube into the scene.

A-Frame

A-Frame is a WebVR implementation that makes building 3D scenes easy. RiVeR imports it
by default, and uses it as a way to boost develpment.

A-Frame works with HTML components in order to extend itself. For example, this wasd-
controls component will allow you move using the keyboard:

<a-scene wasd-controls></a-scene>

A-Frame HTML code and components are a really powerful tool for WebVR development.
RiVeR has been conceived to wrap all backend functions and let you focus on this. Please,
do not underestimate them and refer to A-frame documentation, specifically about
component creation. With some HTML, CSS and JS, you will be building multiplatform,
interactive, connected 3D experiences.

List of A-Frame ready-to-use components
Detailed info on writting a component

Skills

Holodeck

The holodeck comprises a 3D space that users can visit, a storage of coded that has been
loaded to that space, and ways to inject such code within the experience.

https://aframe.io/
https://aframe.io/docs/0.9.0/introduction/
https://aframe.io/docs/0.9.0/introduction/entity-component-system.html
https://aframe.io/aframe-registry/
https://aframe.io/docs/0.9.0/introduction/writing-a-component.html

1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 6/8

Code loads are called "cargos", as in the cargo cult. Master users send code to the
database through the /cargo-sender route. Later, a client-server relation is stablished with
visitors so cargos can be delivered to foreign computers. The basic protocol works as
follows:

1. Client declares the IDs of the cargos it already has (public/js/cargo-loader.js: var
cargoListing).

2. The server compares the IDs from client with the IDs in the database. It will return a
key-value listing with the proper IDs (rvr.rb(51): cargo_delivery = {}).

i. If the ID is already in the database, the server assumes it is the right one and
appends the key with an empty value.

ii. If the ID is not in the database, the server will no append a thing to the
cargo_delivery.

iii. If an ID is in the database but has not been declared by the client, the server will
assume that the client needs to add that code. Hence, it will send a key equal to
the ID with a value equal to the code to be appended.

3. Client receives and discerns wether to keep, remove or update assets.
i. If an ID is not in the cargo_delivery, it's DOM object will be removed.
ii. If it is and the value is empty, it will be kept.
iii. In case of receiving IDs with code, these code snippets will be added as DOM

objects.

Note: currently, the delete function needs to be polished as cargos still do not have a
class-id that let RiVeR delete them if unnecessary.

views/holodeck.erb

The real thing. The A-Frame scene that is constantly updated thanks to /public/js/cargo-
loader.js. It sends AJAX post queries /cargos-update, handles the answer and updated the
DOM model.

views/cargo_sender.erb

An interface that posts data to /cargo-sender, which is inscribed within the cargos table of
the persistence.db database.

Database structure

SQLite stores every Cargo object at the cargos table. You can handle Cargos anytime by
following ActiveRecord's conventions; for example:

https://en.wikipedia.org/wiki/Cargo_cult

1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 7/8

Cargo.find(1)
returns a record object with the first cargo

Cargo.all
returns an array with all the cargos

Cargo.create(
 code: params['cargo'].to_s,
 active: true,
 author: params['author'].to_s)
creates a new cargo record in the database

Cargo.find(5).destroy
will find the record with ID = 5 and delete it

Cargo.destroy_all(author: 'Donald Trump')
will delete all the code snippets by Donald Trump

Agora

(To be implemented)

Agora will coordinate the sessions of many users, so they can stablish user-to-user
connections for sharing realtime data through WebRTC. This will make multiuser
experiences available.

Progress log

Holodeck is working: you load code in a database, and code is passed to the 3D scene.
Holodeck needs to fix the way it destroys DOM cargos that should not be there.
Current: polishing holodeck + adding holocked skills.
Next: [new demo]: inboun API to scene.
Pending: multiuser scene (WebRTC).

But give it some time. It just started! :D

RVR 0.5 - Guillem Carbonell - g@ubik.bz - 2019

Releases

mailto:g@ubik.bz
https://github.com/UbikTransmedia/rvr/releases

1/18/2021 GitHub - UbikTransmedia/rvr: Ruby Virtual Reality

https://github.com/UbikTransmedia/rvr 8/8

No releases published

Packages

No packages published

Languages

JavaScript 34.8% Ruby 32.3% HTML 26.6% CSS 6.3%

https://github.com/users/UbikTransmedia/packages?repo_name=rvr
https://github.com/UbikTransmedia/rvr/search?l=javascript
https://github.com/UbikTransmedia/rvr/search?l=ruby
https://github.com/UbikTransmedia/rvr/search?l=html
https://github.com/UbikTransmedia/rvr/search?l=css

